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Soft thresholds are ubiquitous in living organisms, in particular in mechanisms of neurons and of neural
networks such as sensory systems. Which soft threshold functions produce(threshold) stochastic resonance
remains a question. The answer may depend on the information measure used. We argue that Fisher informa-
tion about signal parameters is an attractive measure of information transmission across soft thresholds. We
illustrate how the pattern of information changes as a signal moves across a soft threshold. For some signals
this pattern is much the same whether Fisher information or signal-to-noise ratio is used as a measure of
information transmission. Noninvertibility of the threshold function, rather than its steepness, is important for
stochastic resonance measured by Fisher information.
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I. INTRODUCTION

Suppose we know whether a noisy signal has crossed a
threshold in each of a sequence of trials. The data can be
represented as a series of zeros and ones corresponding to the
signal plus noise being below or above the “sharp” threshold.
Information about a subthreshold signal increases as the
standard deviation of the noise,s, increases from 0 and then
decreases ass increases further. We call the function that
relates the amount of information about a signal transmitted
across a sharp threshold as a function of the noise standard
deviation, s, the information transmission function. The
value of s at which the information transmission function
reaches a maximum is called thestochastic resonance point
and the phenomenon is calledthreshold stochastic reso-
nance. Dynamical and threshold stochastic resonance have
been well studied in many physical systems such as the
Earth’s climate(Benziet al. [1]) and in a variety of informa-
tion processing systems, including living ones such as neu-
ron firing models and networks of neurons(e.g., Collinset
al. [2], Longtin [3,4], and Gluckmanet al. [5]). For reviews
see Gammaitoniet al. [6], Anishchenkoet al. [7], and Ward
[8]. Threshold stochastic resonance has been explored statis-
tically (e.g., Greenwoodet al. [9], Müller [10], and Müller
and Ward[11]).

It is well known that biological systems under ordinary
conditions usually do not exhibit Heaviside-type threshold

functions, but rather respond to weak signals in a graded way
over some range(e.g., Geldard[12]). In human and animal
psychophysics, the relationship between an organism’s sen-
sitivity to a sensory stimulus and the intensity of the stimulus
is called the “psychometric function.” Psychometric func-
tions are usually modeled by one of three similar functions,
depending on theoretical considerations and goodness of fit:
the logistic function, the Gaussian distribution function, or
the Weibull function(Macmillan and Creelman[13]). All can
be considered to be soft threshold transfer functions because
they all describe a monotonic increase in transmitted infor-
mation about a weak sensory signal as a function of signal
intensity, with the steepness of the function determined by a
parameter. One or another of these three functions can be
said to describe the vast majority of sensory and neural
thresholds, almost always with steepness parameter values
that make them quite different from the discontinuous Heavi-
side function. It is important to understand when and how
stochastic resonance appears in such soft threshold systems.

Suppose that, instead of having a sharp threshold response
represented by zeros and ones, a system possesses a soft
threshold; i.e., for some nondecreasing function with values
going from 0 to 1 we see the function of the noisy signal.
Does the system still exhibit stochastic resonance? A number
of papers identify circumstances where the answer is yes. In
particular, Chapeau-Blondeau and Godivier[14] showed that
stochastic resonance is obtained with a periodic signal and,
for example, a logistic soft threshold transfer function, using
signal-to-noise ratio as a measure of information transmis-
sion. Vilar et al. [15], using a similar signal-to-noise ratio
measure, provided examples of soft threshold transfer func-
tions that yield stochastic resonance and suggested a general
criterion for which transfer functions would have this prop-
erty.

The choice of measurement of information transmission,
important for the study of stochastic resonance with a sharp
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threshold, becomes even more important when the threshold
is soft. Ward[16] explored the significance of a number of
measures of information transmission including the Fisher
information lower bound suggested by Stemmler[17]. For
periodic signals they used a version of signal-to-noise ratio
and a measure from signal detection theory. Rousseauet al.
[18] studied sensors with saturation, another formulation of
the soft threshold, using various measures of information
transmission depending on the input signal type. Ward[19]
showed that thed8 measure from signal detection theory ex-
hibits stochastic resonance for the logistic function and for
the exponential function.

In this paper we investigate the stochastic resonance phe-
nomenon with a variety of soft threshold transfer functions,
using Fisher information as a measure of information trans-
mission. We introduce the Fisher information for a periodic
signal in discrete time which is a weighted sum of Fisher
information values for a set of constant signals that approxi-
mate the periodic signal. This enables us to compare results
for periodic signals using Fisher information with results us-
ing signal-to-noise ratio.

Suppose the transfer function increases only in an inter-
val, which we call a window, and is 0 below the window and
1 above it. We show that Fisher information does not depend
on the shape of the soft threshold, but only on the position of
the signal relative to the window where part of the noisy
signal is observed. This result greatly simplifies the study,
reducing it to the exploration of how the stochastic resonance
phenomenon depends on the window itself. We study this
question. Computations indicate that if the signal is inside
the soft threshold window, rather than outside it, there is no
stochastic resonance. In other words, the edges of the win-
dow are critical points for the emergence of stochastic reso-
nance.

In Sec. II, we review the general property of Fisher infor-
mation that it is unchanged by any invertible transformation
of a constant, periodic, or aperiodic signal. This implies that
stochastic resonance cannot appear if the measure is Fisher
information and if the soft threshold function is invertible.

In Sec. III, we define a large and convenient family of
noninvertible soft threshold functions in terms of noninvert-
ible segments above and below a monotonic, invertible func-
tion h and compute for a constant signals the Fisher infor-
mation abouts. We see that the Fisher information does not
depend on the functionh that is applied in the soft threshold
window. In the example of exponential noise the situation
simplifies even further. Our calculations show that the Fisher
information, as a function of the noise variance, exhibits sto-
chastic resonance for various noise distributions. In the case
of noise with compact support, we sketch a proof that sto-
chastic resonance occurs.

In Sec. IV, we show how the information transmission
function depends on the width of the soft threshold window,
including the case where the window is open on one side. We
see that when the signal slips inside the window, stochastic
resonance disappears.

Section V explores periodic signals and the comparison of
Fisher information to signal-to-noise ratio for such signals.
We sketch an argument showing that stochastic resonance
arises in the numerator(the Fourier coefficient of the output

signal) of the signal-to-noise ratio. A further discussion of
the results concludes Sec. V.

II. FISHER INFORMATION AND INVERTIBLE
TRANSFER FUNCTIONS

In previous work on soft thresholds and stochastic reso-
nance a variety of mathematical transfer functionsT have
been studied. To our knowledge, all have been invertible
functions—that is, one-to-one functions. The logistic func-
tions (e.g., Chapeau-Blondeau and Godivier[14]), the expo-
nential (e.g., Bezrukov and Vodyanoy[20]), and the cubic
(e.g., Vilaret al. [15]) have all been shown to yield stochas-
tic resonance using a signal-to-noise ratio(SNR) measure of
information transmission about a periodic signal. The situa-
tion is quite different if Fisher information about, e.g., a con-
stant signals is used as a measure of information transmis-
sion across a soft threshold. Fisher information, the inverse
of the asymptotic minimum variance of any regular estimator
of the signal, is known to be invariant with respect to invert-
ible transformations(e.g., Bickelet al. [21]). This property is
desirable since one certainly does not wish to measure a
change of information if the noisy input signal can be re-
gained by simply inverting the data. This implies that a
model using a logistic transfer function produces the same
Fisher information as ifT were absent. There can be no
stochastic resonance in such a model.

More formally, suppose that at each discrete time
t1,t2, . . . ,tn the noisy signals+«stid is produced, where the
noise variables«stid are independent and identically distrib-
uted(i.i.d.) with mean zero and variances2. In the following
we write briefly«i for «stid. Note that we consider the case of
a constant signal function,sstd=s. The probability density
function and probability distribution function of«i are de-
noted byfs andFs, respectively. Suppose the soft threshold
dataYi =Ystid are of the form

Yi = Tss+ «id,

where the transfer functionT, also referred to as the “soft
threshold function,” is an invertible function on the whole
real line. If the distribution of« belongs to a scale family
such as the normal distributionfsszd= fsz/sd /s, the Fisher
information abouts is

Isssd =E
−`

` fs8szd2

fsszd
dz=

1

s2E
−`

` f8szd2

fszd
dz. s1d

This is also the Fisher information for the untransformed
signals+«i. Notice that Eq.(1) is a decreasing function ofs.
In other words, Fisher information for both untransformed
and transformed data always decreases ass increases from
0, meaning that stochastic resonance does not arise for in-
vertible soft threshold transfer functions.

The question arises, then, why the soft threshold results
using the SNR, mentioned earlier, were obtained. It is pos-
sible that the SNR measure is not invariant to invertible
transfer functions. It is also possible that invertible transfer
functions, such as the logistic, can be rendered effectively
noninvertible by the limitations of numerical precision of the
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computations. In the next section, in order to explore this
question and to study the transfer function for Fisher infor-
mation more generally, we define a family of noninvertible
soft threshold functions and examine the conditions under
which one obtains stochastic resonance. In Sec. V we com-
pare Fisher information and signal-to-noise ratio for a peri-
odic signal.

III. FISHER INFORMATION AND NONINVERTIBLE
TRANSFER FUNCTIONS

We begin by introducing the continuous but noninvertible
soft threshold transfer functionT. It is convenient to do this
in terms of fixed finite numbersa,b in order to locate the
function relative to the signal. As before, we lets be a con-
stant signal that, for now, we think of as being below the
thresholda, s,a. The noisy signal iss+«i, and the distribu-
tion and density functions of the noise arefs and Fs. The
soft threshold dataYi are defined by

Yi = Tss+ «id = 1fb,`dss+ «id + hss+ «id1sa,bdss+ «id, s2d

where 1Asxd is an indicator function with value 1 ifx is in the
setA, xPA, and value 0 if not. For example, 1fb,`dss+«id is
1 if s+«i ùb, and zero otherwise. The functionh is an in-
vertible function on the restricted rangesa,bd only. Notice
that T is not invertible over the entire ranges−` , +`d. We
cannot recover the noisy signal from the soft threshold data,
since all values ofs+«i belowa will have been mapped to 0
and all values aboveb to 1. The casea=b, whereT is a step
function, was studied by Greenwoodet al. [9 and 22] for
both constant and varying signals.

Our assumptions imply that the functionh is strictly
monotonically increasing on the “soft threshold window”
sa,bd. If h is linear onsa,bd, thenT is piecewise linear with
slope 1/sb−ad for a,x,b. Note that transfer functionsT as
defined in Eq.(2) are not only noninvertible but also non-
trivial in the sense that they are monotonically increasing
with both (noninvertible) constant and(invertible) increasing
parts. This does, in particular, exclude(trivial) constant func-
tions which are technically speaking both noninvertible and
monotonically increasing(and clearly do not produce sto-
chastic resonance).

In order to compute Fisher information for the soft thresh-
old transfer function we need the probability distribution of
Y, which will be denoted byG. We have

PsY = 0d = Pss+ «i ø ad = Fssa − sd,

PsY P dyd = P„hss+ «id P dy… for y P s0,1d,

PsY = 1d = Pss+ «i ù bd = 1 −Fssb − sd.

Hence the distributionG of Y can be written as

Gsdyd = Fssa − sd1h0jsdyd + fs„h
−1syd − s…

1

h8„h−1syd…
1s0,1d

3sdyd + f1 − Fssb − sdg1h1jsdyd. s3d

As mentioned in Sec. II, Fisher information is the inverse of

the minimal asymptotic variance of any regular estimator of
s (Bickel et al. [21]). Since our model is parametric, such an
efficientestimator ofs is the maximum likelihood estimator
which solves 0=oi=1

n lsYid, where lsyd=d/ds ln gsyd is the
score function andg the probability density ofY. We have
ls0d=−fssa−sd /Fssa−sd, ls1d= fssb−sd / f1−Fssb−sdg, and
lsyd=−fs8(h−1syd−s) / fs(h−1syd−s), 0,y,1. Hence the
maximum likelihood estimator solves

0 = o
i=1

n

lsYid = o
i=1

n S−
fssa − sd
Fssa − sd

1h0jsYid −
fs8„h

−1sYid − s…

fs„h
−1sYid − s…

1s0,1d

3sYid +
fssa − sd

1 − Fssb − sd
1h1jsYidD

= − n̂0
fssa − sd
Fssa − sd

− o
YiPs0,1d

fs8„h
−1sYid − s…

fs„h
−1sYid − s…

+ n̂1
fssb − sd

1 − Fssb − sd
,

wheren̂0 is the number ofi ’s with Yi =0 andn̂1 the number
of i ’s with Yi =1.

The Fisher information abouts is the expectation of the
squared score function

Is = Issd = Es„lsYd…2.

Using h−1sYd−s=«, we obtain

Is =
fssa − sd2

Fssa − sd
+E

a−s

b−s fs8szd2

fsszd
dz+

fssb − sd2

1 − Fssb − sd
. s4d

Whena=b, this becomes the Fisher information for a sharp
threshold function, or Heaviside function,

Is =
ffssa − sdg2

Fssa − sd
+

ffssb − sdg2

1 − Fssb − sd
=

ffssa − sdg2

Fssa − sdf1 − Fssa − sdg
.

s5d

Notice that the center term of Eq.(4) is the Fisher infor-
mation of the invertible threshold function defined onsa,bd
and so is simply omitted in Eq.(5) whena=b. The left-hand
term in Eq.(4) is the Fisher information for the part of the
transfer function below the soft threshold window and the
right-hand term is that for the part above the window.

We assume that the distribution of« belongs to a scale
family, fsszd= fsz/sd /s andFsszd=Fsz/sd. Hence Fisher in-
formation as a function ofs is

Isssd =
1

s21F fSa − s

s
DG2

FSa − s

s
D

+E
sa−sd/s

sb−sd/s ff8szdg2

fszd
dz+

F fSb − s

s
DG2

1 − FSb − s

s
D2 . s6d

If f =f andF=F are the standard normal density and distri-
bution function, we have
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Isssd =
1

s21FfSa − s

s
DG2

FSa − s

s
D

+E
sa−sd/s

sb−sd/s

z2fszddz+
FfSb − s

s
DG2

1 − FSb − s

s
D2 . s7d

The computations above show that the Fisher information
does not depend onh. This same point was made in Sec. V
of Rousseauet al. [18] for the case where the signal is ran-
dom and the mutual information between the distributions of
input signal and output is used instead of Fisher information.

Exponential noise. If the noise distribution is
exponential—i.e., fsxd=e−x,Fsxd=1−e−x—then the Fisher
information also does not depend on the upper limit of the
soft threshold window. This can be seen easily. Using
F8sxd= fsxd=−f8sxd and fsxd=1−Fsxd, the Fisher informa-
tion is

Isssd =
1

s21F fSa − s

s
DG2

FSa − s

s
D +E

sa−sd/s

sb−sd/s ff8szdg2

fszd
dz

+
F fSb − s

s
DG2

1 − FSb − s

s
D2

=
1

s23F fSa − s

s
DG2

FSa − s

s
D + FSb − s

s
D − FSa − s

s
D

+ fSb − s

s
D4

=
1

s23F fSa − s

s
DG2

FSa − s

s
D − fSb − s

s
D + fSa − s

s
D

+ fSb − s

s
D4

=
1

s23F fSa − s

s
DG2

FSa − s

s
D + fSa − s

s
D4 . s8d

It does not depend onb. Hence no information is gained if,
instead of just the exceedances in the simple sharp threshold
modelsa=bd, we observe soft threshold datasb.ad or even
all data above a thresholdsb=`d. The optimal noise levels,
where the curve takes its maximum, is the same in all mod-
els.

Compact support. We are interested in the question, which
soft thresholded data models exhibit stochastic resonance—
i.e. for what models does Fisher information as a function of
the noise levels increase to a maximum and then decrease?
This question cannot be answered for all models by a single
theoretical argument, even if the distributionFs of « belongs
to a scale family, as we assume. If, for example, the noise
distribution has compact support, we can verify that stochas-
tic resonance must occur by showing that Fisher information
reaches a maximum for some nonzero value ofs, as follows.

Suppose the noise distribution has compact support. This
means that all of its probability density lies within a bounded
interval. We can show that stochastic resonance is exhibited
by verifying that Isssd=0 if sP f0,a−sd, Isssd.0 if sùa
−s, andIsssd→0 ass→`. Suppose, without loss of gener-
ality, that the support of the noise densityfs is f−s ,sg—i.e.,
fsszd= fsz/sd /s with fszd.0 on f−1,1g and zero otherwise.
Let 0øs,a−s. Then PsY=0d=Fssa−sd=F(sa−sd /s)=1
and the Fisher informationE(lsYd)2 consists only of the first
term in Eq.(4) pertaining to zero observations,Isssd= fssa
−sd /Fssa−sd. Sincefssa−sd=0 andFssa−sd=1 (in the case
s=0, fs is replaced by a point mass at zero), we have
Isssd=0 for 0øs,a−s.

Let sùa−s and considerIsssd as given in Eq.(4) or Eq.
(6) with the third summand being possibly zero. Clearly, all
terms of the sum are non-negative. Sincefssa−sd.0 and
Fssa−sd.0, the first summand is strictly greater than zero.
This showsIsssd.0 if sùa−s.

To show Isssd→0 for s→`, consider the Fisher infor-
mation Eq.(6). The first and third summands tend to a non-
negative constant and the second summand decreases to zero
as s increases. HenceIsssd→0 ass→`, due to the com-
mon factor 1/s2.

Figure 1(a) displays the results of a calculation of Fisher
information for the compact noise densityfsszd= fsz/sd /s
with fszd=0.5fcosspzd+1g for −1,z,1, fszd=0 otherwise,
the soft threshold windowa=1,b=1.5, and three representa-
tive values of the signals,a. Stochastic resonance is appar-
ent as predicted by the above analysis.

Remark. If the signals is random,s=X+u whereX is a
random variable with compact support andu a location pa-
rameter, a similar argument shows that stochastic resonance
is exhibited. For both constant and varying signals, trans-
formed by nontrivial noninvertible transfer functions such as
those defined in Eq.(2), Fisher information displays stochas-
tic resonance.

Because the Gaussian(normal) probability distribution is
very similar to one with compact support(there is very little
probability density in the tails), we would expect Fisher in-
formation to exhibit stochastic resonance for Gaussian noise
and the same window. Figure 1(b) displays the results of
calculations of Fisher information from Eq.(7) for three val-
ues of the constant signals with the soft threshold window
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a=1,b=1.5. Stochastic resonance is clearly present. Similar
results for exponential noise based on calculations of Fisher
information from Eq.(8) appear in Fig. 1(c). The form of the
result does not depend on the invertible portion of the trans-
fer function,h, which does not appear in the equations for

Fisher information. In the next section we discuss the effects
of changing the width of the soft threshold window and the
location of the signal with respect to that window.

IV. CHANGING THE SOFT THRESHOLD WINDOW

In this section, we study the behavior of the Fisher infor-
mation and the occurrence of stochastic resonance when the
upper and lower bounds of the soft threshold window vary.
As mentioned earlier the casea=b corresponds to the sharp
threshold model, which was investigated by Greenwood
et al. [9].

Another example of the soft threshold model is the case
b=`; i.e., an invertible transformationh of the data is ob-
served above the thresholda:

Yi = Tss+ «id = hss+ «id1sa,`dss+ «id.

Since Fisher information fors will, again, not depend onh,
we can takeh to be the identity function; i.e., the noisy signal
is observed directly if it is large enough. The Fisher informa-
tion for this model is

Issd =
ffssa − sdg2

Fssa − sd
+E

a−s

` ffs8szdg2

fsszd
dz.

For s,a,b we expect an increase of information asb
increases. In Figs. 2(a) and 2(b) we see, for two values ofs,
that for a=1 the maximum information does not increase
much afterb reaches 1.5. The stochastic resonance point is
higher and the peak sharper fors closer to the lower edge of
the window.

If a=−` andb=`, then the noisy signal, or an invertible
transformation of it, is completely observed,Yi =hss+«id.
This is the case discussed in Sec. II, where Fisher informa-
tion Isssd, computed from Eq.(1), is decreasing ins. An
example is the logistic function.

Greenwoodet al. [9] compared Fisher information for the
model of a completely observed signal, the sharp threshold
model, and the signal observed above a threshold. For ex-
ample, the proportion of the total available Fisher informa-
tion for the fully observed signal retained in the sharp thresh-
old model with s=a=b is about 0.64, whereas whens
=a,b=` the proportion retained is about 0.82, a substantial
increase.

Another question of interest is, do we observe stochastic
resonance if instead of the signal being subthreshold,s,a,
the signals is inside the soft threshold window,a,s,b?
The answer is “no” because whens is in the window and
s=0, theYi give full “local” information about the location
of s. As s increases, the information can only decrease. This
is illustrated in Fig. 3 where we see that the cases=a appears
to be critical in the sense that fors,a, stochastic resonance
appears but fors.a it does not. This situation is symmetric
with respect to the soft threshold window, with stochastic
resonance appearing for boths,a and fors.b. The maxi-
mum of the information transmission curve increases and
occurs at lower noise levels ass approaches the soft thresh-
old window from above or from below.

FIG. 1. (a) The Fisher information transmission function for
noise density with compact support,fsszd= fsz/sd /s with fszd
=0.5fcosspzd+1g for −1,z,1, soft threshold window(1,1.5). The
integral in the middle term of Eq.(6) was evaluated numerically
using Neville’s algorithm for Romberg integration[23]. (b) The
Fisher information transmission function for Gaussian noise, soft
threshold window(1, 1.5). The integral in the middle of Eq.(7) was
evaluated as in(a); the Gaussian distribution was approximated to
an accuracy of nine decimal places.(c) The Fisher information
transmission function for exponential noise, soft threshold window
(1,1.5).
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V. PERIODIC SIGNAL

Much of the literature on stochastic resonance concerns
periodic signals and the most-used measure of output signal
detectability is the signal-to-noise ratio. The definition of the
SNR is, however, not uniform in the literature. If the signal is
periodic and the noise is “white,” the SNR is the ratio of the

amplitude of the signal to the amplitude of the noise. How-
ever, if output signal and noise from a specific model are
being observed, the SNR is computed in a way appropriate to
the model and data at hand. Some examples can be found in
[24,15].

In this section, we compare Fisher information with the
SNR as defined by Chapeau-Blondeau and Godivier[14],
who considered soft threshold models with a periodic signal
of fixed frequency.

Our results for a constant signal extend to the case of a
periodic signal with fixed frequency, such as a sinusoid. We
center the signal atc and write it asAsstd+c, whereA is the
amplitude anduss·duø1. Depending onc andA, the signal is
either completely outside the soft threshold windowsa,bd,
completely inside the window, or partly inside and partly
outside the window(Fig. 4). The output signal is observed at
discrete time points. Hence we can think of the underlying
periodic signal as being approximated by a set ofm piece-
wise constant signals(Fig. 4). The Fisher information for the
signal is the sum of the information calculated for the con-
stant segments. Since each cycle contains a different realiza-
tion of the noise, we are implicitly averaging over many
different realizations. Having defined Fisher information for
a periodic signal in a way that permits comparison with the
SNR measure, we will compare the two measures as func-
tions of s.

Consider, for example, a subthreshold periodic signal,
Asstd+c,a,b. For simplicity we assume that the period is
2p and that we have equally spaced time points at which we
observe the output overn periods. Divide each period intom
subintervals and denote the end points by

tjk = j
2p

m
+ 2psk − 1d, j = 1, . . . ,m, k = 1, . . . ,n.

The observations areYjk=T(Asstjkd+c+« jk) where the ampli-
tude A.0 is the parameter and the« jk’s are i.i.d. errors.
Because the periodic signal simply repeats over then peri-
ods, sstjkd=sstj1d. Hence for each j the observations

FIG. 2. Fisher information transmission function for Gaussian
noise, soft threshold windowsa,bd=s1,1.1d, (1,1.5), and(1,5.1). (a)
The signals=0.4 is far below the window.(b) The signals=0.8 is
near the lower edgea=1 of the window.

FIG. 3. The Fisher information transmission function shows sto-
chastic resonance when the signal is either above or below the soft
threshold window, but not when it is inside the window. The func-
tion is symmetric about the soft threshold window(1,1.5).

FIG. 4. Possible locations of a periodic signal relative to a soft
threshold window and a periodic signal observed at discrete time
points.
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Yj1, . . . ,Yjn are i.i.d. as with a constant signal. As before, we
can use a maximum likelihood estimator, a solution of
sd/dAdhok=1

n o j=1
m ln gsYjkdj=0. The distribution functionG

and densityg are as before(see Sec. III) with s replaced by
Asstj1d+c. In order to compute Fisher information, one dif-
ferentiates the log-likelihoodok=1

n o j=1
m ln gsYjkd as in Sec. III,

now with respect to the parameterA. A factor of sstj1d ap-
pears as the inner derivative ofAsstj1d+c (chain rule). Since
the errors are independent, the Fisher information aboutA is

IsAd = o
j=1

m

sstj1d2I jsAd,

with

I jsAd =
fs„afAsstj1d + cg…2

Fs„a − fAsstj1d + cg…
+E

a−fAsst j1d+cg

b−fAsst j1d+cg fs8szd2
fsszd

dz

+
fs„b − fAsstj1d + cdg2

1 − Fs„b − fAsstj1d + cdg
.

Notice that I jsAd is the Fisher information at thej th time
point of a cycle. Since in each cycle the signal values at the
j th time point are the same—namely,sstjkd=sstj1d—the in-
formation I jsAd is the same as for constant signal Eq.(4),
except for the value of the signal. The weighted sum of these
separate terms gives the Fisher information aboutA for the
entire periodic signal. Notice that the observations where the
signal is small or large[ss·d close to 1 or −1] contribute more
to the information than those around zero.

From our discussion in Sec. IV about constant signals it is
clear that for noise distributions with a unimodal density
Fisher information, regarded as a function ofs, will behave
as follows. If the periodic signal is completely outside the
soft threshold window, the information transmission curve is
a weighted sum of curves showing stochastic resonance, in-
creasing from zero to a maximum and then decreasing again
to zero, thus giving a curve of the same type. If the signal is
completely inside the window, there is no stochastic reso-
nance since Fisher information is a weighted sum of decreas-
ing curves—i.e., decreasing ins. If the signal straddles the
upper or lower edge of the window or if it straddles the entire
window, we have a mixture of these two types of curves:
stochastic resonance and decreasing curves. The shape of the
information transmission curve will depend on which type
contributes most strongly—i.e., on the signal location and
amplitude relative to the window location and window
width.

The corresponding signal-to-noise ratio used by[14] at
the fundamental frequency is the ratioS/N, whereS andN
are defined as follows. Consider the first period of the signal.
The numeratorS is the squared absolute value of the Fourier
coefficient of the output signal:

S= U 1

m
o
j=1

m

EYj1e
−it j1U2

.

The denominatorN is the averaged output variance times
multiplied by the step width 2p /m and a constant bandwidth
DB:

N =
1

m
o
j=1

m

Var Yj1
2p

m
DB.

We now sketch an argument that the stochastic resonance
effect is obtained from the numeratorS (the Fourier coeffi-
cient of the output signal) of the SNR expressionS/R. For
simplicity, consider a signal with center 0,Asstj1d, and a
subthreshold signal with one sharp threshold,a. In the de-
nominator N, the output variance, VarY is an increasing
function of the noise standard deviations, starting at 0 and
then saturating at a certain point when about half of theY’s
will be zero and the other half one. This is easily verified
for this model, assuming thatF is strictly monotonically
increasing and symmetric,Fs0d=1/2. The variance
is VarYj1=PsYj1=1df1−PsYj1=1dg=h1−F(fa−Asstj1dg /s)j
3F(fa−Asstj1dg /s), which is monotonically increasing from
f1−Fs`dgFs`d=0 to f1−Fs0dgFs0d=1/4 ass tends from 0
to `. Due to this monotonic behavior, the denominatorN
cannot exhibit stochastic resonance.

That the numeratorS must have a maximum can be seen
as follows. Consider

S= U 1

m
o
j=1

m

EYj1e
is−t j1dU2

= U 1

m
o
j=1

m

EYj1fcoss− tj1d + i sins− tj1dgU2

=
1

m2Uo
j=1

m

EYj1 coss− tj1d + io
j=1

m

EYj1 sins− tj1dU2

=
1

m2FSo
j=1

m

EYj1 coss− tj1dD2

+ So
j=1

m

EYj1 sins− tj1dD2G .

s9d

In the sharp threshold case, thej th expectation isEYj1=1
−F(fa−Asstj1dg /s) which is, under the above assumptions
and for everyj , monotonically increasing from 1−Fs`d=0
to the constant 1−Fs0d=1/2 ass increases. HenceS=0 for

FIG. 5. Fisher information transmission function for a periodic
signal centered atc, 0.2 sinstd+c. The value ofc varies from below
the window,(1,2), to above the window. Stochastic resonance ap-
pears forc outside the window. The effect is symmetric with respect
to the window. Integrals were evaluated as in Fig. 1(b).
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s=0 andS.0 for finite s.0, since theEYj1’s vary with j in
this case. Fors→` we haveS=0: All expectations tend to
1/2; i.e.,S tends to

1

4m2FSo
j=1

m

coss− tj1dD2

+ So
j=1

m

sins− tj1dD2G .

Because of the symmetry of the sine and cosine and since we
assume equally spaced time points, negative and positive
values cancel out and the expression is zero.

The same argument shows thatS=0 for any value ofs if
the signal is constant,Asstd=s, since then all expectations are
the same,EYj1=1−F(sa−sd /s) for every j . Hence the SNR
degenerates in this case.

One can see, looking atS as computed in Eq.(9), that the
stochastic resonance behavior of the SNR depends on the
behavior ins of the expectation ofYj1: stochastic resonance
results if, fors=0 and fors→`, EYj1 is the same for allj ,
whereas for somes theEYj1’s are not the same for allj . Let
us look at the expectationsEsYj1d in the soft threshold model
Eq. (2) with soft threshold windowsa,bd. For simplicity we
assume again that the centerc of the signal is 0. Then,

EsYj1d =E T„Asstj1d + sx…fsxddx

=E
fa−Asst j1dg/s

fb−Asst j1dg/s

h„Asstj1d + sx…fsxddx+ 1

− FSb − Asstj1d
s

D . s10d

The last two terms correspond to the expectationsEsYj1d in
the sharp threshold model and exhibit the behavior described
in the discussion above. In particular, the expectations in-
crease from 0 to 1/2 ass increases. We will show that the
integral in Eq.(10) is 0 for s=0 ands=`. Since the integral
is non-negative, this, combined with the above, will show
that theEsYj1d’s in the soft threshold model exhibit the same
behavior as those in the sharp threshold model, which ex-
plains stochastic resonance. Consider, now, the integral in
Eq. (10). The range of the functionh is [0,1]. Hence the
integral is bounded from below by 0 and from above by

E
fa−Asst j1dg/s

fb−Asst j1dg/s

fsxddx= FSb − Asstj1d
s

D − FSa − Asstj1d
s

D .

Since the signal is subthreshold, bothb−Asstj1d and a
−Asstj1d are non-negative. Hence, fors=0 and s=`, the
integrals areFs`d−Fs`d=0 andFs0d−Fs0d=0.

For invertible soft threshold functions analogous consid-
erations apply. Consider the logistic function. An interval,
which may be, in effect, a soft threshold window for this
case, is an interval around the center of the logistic curve
outside of which the function values are approximately zero
or one. Ass→`, the expectationsEYj1 are 1/2 in the limit.
For s=0, these expectations are approximately zero if and
only if the signals—i.e., the valuesAsstj1d+c—are outside
the approximate soft threshold window.

This argument, showing that stochastic resonance occurs
in the numeratorS of the SNR, may account for the stochas-
tic resonance for subthreshold periodic signals with soft

FIG. 6. (a) The SNR informa-
tion transmission function for a
periodic signal centered atc,
0.2 sinstd+c, with a linear thresh-
old function h inside the window
(1,2), m=128. Integrals were
evaluated as in Fig. 1(b). (b) The
numerator S (Fourier coefficient
of the output signal) of the SNR
for the same conditions as in(a).
(c) The denominatorN (averaged
output variance) of the SNR for
the same conditions as in(a).
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thresholds observed by Chapeau-Blondeau and Godivier[14]
and also by Rousseauet al. [18].

For our illustrations we considered Gaussian noise. In
Figs. 5–7 we used a soft threshold transfer function as in Eq.
(2) with soft threshold windowsa,bd=s1,2d, a sinusoidal
signal with amplitudeA=0.2, 0.2 sinstd+c, andm=128. Fig-
ure 5 shows the Fisher information aboutA whereas Fig. 6(a)
shows the SNR with linear threshold functionh, increasing
betweena=1 andb=2. Notice that Figs. 5 and 6(a) are very
similar. The vertical scales are not directly comparable. The
Fisher information takes rather large values because we
chose a largem. Figures 6(b) and 6(c) show the numerator
and denominator of the SNR separately. We see that, as ar-
gued above, the numerator shows stochastic resonance when
the signal is outside the window. Figures 7(a) and 7(b) show
the SNR forh concave upward and downward, respectively,
in the window. These figures are related by reverse symme-
try. They are similar in form but not identical to Fig. 6(a).
Although the SNR, unlike Fisher information, does depend
on h, the dependence is not very pronounced in our ex-
amples.

Figures 8(a) and 8(b) show the SNR for a sinusoidal sig-
nal with amplitude 0.5 and centerc with the logistic function

Tszd = hszd = s1 + e−sz−ad/bd−1

as a soft threshold function. Since this transfer functionT is
invertible, the Fisher information(not shown), does not ex-

hibit stochastic resonance, as pointed out in Sec. II. In Fig.
8(a), with a=1.5 andb=0.05, the SNR does show stochastic
resonance for values ofc away from the value of the location
parametera, in line with the above argument concerning the
logistic and as found by Chapeau-Blondeau and Godivier
[14]. Indeed, for some values ofc, the SNR plot closely
resembles the function in their Fig. 7 for the same value ofb,
with an initial monotonic drop in SNR at low noise levels
followed by a rise in SNR at intermediate noise levels and
then a further decline. The behavior may be explained by the
denominator of the SNR going to 0 ass goes to 0, as shown
in Fig. 6(c). One could examine the relative rates of change
in numerator and denominator to establish a firm argument.
In Fig. 8(b) the logistic function hasa=1.5 andb=0.2. As in
[14], we find that the less-steep logistic produces no stochas-
tic resonance for some of the same signals(here values ofc)
for which the steeper logistic in Fig. 8(a) did produce sto-
chastic resonance. For values ofc farther from the value of
a, however, we do see slight stochastic resonance in Fig.
8(b). This is again a windowlike effect and illustrates the
delicate dependence of stochastic resonance on signal place-
ment with respect to the soft threshold function.

In summary, Fisher information does not produce stochas-
tic resonance for invertible soft threshold transfer functions

FIG. 7. (a) The SNR information transmission function for a
periodic signal centered atc, 0.5 sinstd+c, with a concave upward
threshold functionhszd=sz−1d2 in the window(1,2). (b) As (a) but
with concave downward threshold functionhszd=1−sz−2d2 in the
window (1,2).

FIG. 8. (a) The SNR information transmission function for a
logistic soft threshold transfer functionhszd=s1+e−sz−ad/bd−1 with
a=1.5 andb=0.05 and a periodic signal centered atc, 0.5 sinstd
+c. Integrals were evaluated as in Fig. 1(b) except that a generali-
zation of Romberg integration to the case of improper integrals was
used.(b) As (a) but with a=1.5 andb=0.2.
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but does produce it for nontrivial noninvertible functions and
for both constant and changing signals. The SNR informa-
tion transmission curve is degenerate for constant signals but
may exhibit stochastic resonance for periodic signals for
both invertible and noninvertible transfer functions. Both
measures have the property that stochastic resonance is not
found when the signal is entirely within the soft threshold
window. For constant signals and Fisher information, the
edges of the soft threshold window are critical points for
stochastic resonance. For periodic signals, computations
show similar results. Since the signal may straddle the edges
of the window, the disappearance of stochastic resonance as
the signal moves inside the window may be less abrupt.

The Fisher information has theoretical advantages as a
measure of information about “weak” noisy signals moving
across soft thresholds. First, it has a unique definition and
can be computed for periodic as well as for constant signals.
It has an information theoretic status, of the asymptotic vari-
ance of an efficient estimator of input signal amplitude. It is
invariant with respect to invertible transfer functions. The
SNR, on the other hand, has been defined in a variety of
ways. With the popular definition used here, the SNR may
exhibit stochastic resonance for invertible transfer functions
such as the logistic but its qualitative performance is similar
to that of Fisher information. Namely, stochastic resonance
appears where the transfer function is relatively constant,

growing stronger when the signal is near an interval of in-
crease, and stochastic resonance disappears in intervals
where the transfer function is definitely increasing. What is
important for stochastic resonance, whether measured by
Fisher information or the SNR, is the signal being near an
edge between an interval of relatively constant transfer func-
tion and an interval where this function increases. The slope
of the transfer function is not, in itself, of great importance.

The difference between the two measures may not be of
great practical importance. In all living organisms and many
other natural systems, there are energy or information quan-
tities below which the system simply does not respond and
other quantities above which the response saturates, creating
a noninvertible nonlinearity that will result in stochastic
resonance under the conditions we have indicated, using ei-
ther measure of information transfer.
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