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Soft threshold stochastic resonance
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Soft thresholds are ubiquitous in living organisms, in particular in mechanisms of neurons and of neural
networks such as sensory systems. Which soft threshold functions pr@tiueshold stochastic resonance
remains a question. The answer may depend on the information measure used. We argue that Fisher informa-
tion about signal parameters is an attractive measure of information transmission across soft thresholds. We
illustrate how the pattern of information changes as a signal moves across a soft threshold. For some signals
this pattern is much the same whether Fisher information or signal-to-noise ratio is used as a measure of
information transmission. Noninvertibility of the threshold function, rather than its steepness, is important for
stochastic resonance measured by Fisher information.
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[. INTRODUCTION functions, but rather respond to weak signals in a graded way
over some rangeée.g., Geldard12]). In human and animal

Suppose we know whether a noisy signal has crossed gsychophysics, the relationship between an organism’s sen-
threshold in each of a sequence of trials. The data can bsitivity to a sensory stimulus and the intensity of the stimulus
represented as a series of zeros and ones corresponding to thecalled the “psychometric function.” Psychometric func-
signal plus noise being below or above the “sharp” thresholdtions are usually modeled by one of three similar functions,
Information about a subthreshold signal increases as thdepending on theoretical considerations and goodness of fit:
standard deviation of the noise, increases from 0 and then the logistic function, the Gaussian distribution function, or
decreases as increases further. We call the function that the Weibull function(Macmillan and Creelmafi.3]). All can
relates the amount of information about a signal transmitted€ considered to be soft threshold transfer functions because
across a sharp threshold as a function of the noise standafi@€y all describe a monotonic increase in transmitted infor-
deviation, o, the information transmission functionThe —Mation about a weak sensory signal as a function of signal
value of o at which the information transmission function INtensity, with the steepness of the function determined by a
reaches a maximum is called thtochastic resonance point Parameter. One or another of these three functions can be
and the phenomenon is calletireshold stochastic reso- Said to describe the vast majority of sensory and neural
nance Dynamical and threshold stochastic resonance havg
been well studied in many physical systems such as th ide function. It is important to understand when and how

Earths cl|ma_te(BenZ|et al._[l]) af_‘d In a variety of informa- stochastic resonance appears in such soft threshold systems.
tion processing systems, including living ones such as neu- g 5550 that, instead of having a sharp threshold response

rcl)n ;irinLg mo_delgs and réeg/\llorl;s of nel:rogsgl.__, Collinset represented by zeros and ones, a system possesses a soft
al. [2], Longtin [3,4], an uckmaret al. [5]). For reviews threshold; i.e., for some nondecreasing function with values

see Gammaitoret al. [6], Anishchenkeet al. [7], and Ward — 5in from 0 to 1 we see the function of the noisy signal.

[8]. Threshold stochastic resonance has been explored statfgyeq he system still exhibit stochastic resonance? A number

tically (e.g., Greenwoodkt al. [9], Maller [10], and Muller of papers identify circumstances where the answer is yes. In

and Ward[ll]). . . . particular, Chapeau-Blondeau and GodiJit4] showed that

It Is well known that b'OIOQ!C‘T’II systems under ordinary gy, chastic resonance is obtained with a periodic signal and,

conditions usually do not exhibit Heaviside-type thresholdi, oyampe, a logistic soft threshold transfer function, using
signal-to-noise ratio as a measure of information transmis-
sion. Vilar et al. [15], using a similar signal-to-noise ratio

resholds, almost always with steepness parameter values
at make them quite different from the discontinuous Heavi-

*Electronic address: pgreenw@math.asu.edu measure, provided examples of soft threshold transfer func-
http://math.asu.edw/pgreenw/ tions that yield stochastic resonance and suggested a general

"Electronic address: uschi@math.uni-bremen.de criterion for which transfer functions would have this prop-
http://www.math.uni-bremen.delischi/ erty.

*Electronic address: lward@psych.ubc.ca The choice of measurement of information transmission,
http://www.psych.ubc.caflward/ important for the study of stochastic resonance with a sharp
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threshold, becomes even more important when the threshokigna) of the signal-to-noise ratio. A further discussion of
is soft. Ward[16] explored the significance of a number of the results concludes Sec. V.

measures of information transmission including the Fisher
information lower bound suggested by Stemm&r]. For
periodic signals they used eiq?/ersion g:‘ signal-to-noise ratio ll. FISHER INFORMATION AND INVERTIBLE

and a measure from signal detection theory. Rousstail TRANSFER FUNCTIONS

[18] studied sensors with saturation, another formulation of |, previous work on soft thresholds and stochastic reso-
the soft threshold, using various measures of information, ;e 5 variety of mathematical transfer functidhfiave

transmission de|cl)ending on the input signal type. Wasl oo stydied. To our knowledge, all have been invertible
showed that thel’ measure from signal detection theory ex- functions—that is, one-to-one functions. The logistic func-

hibits stochastic resonance for the logistic function and for. :
the exponential function. tions (e.g., Chapeau-Blondeau and Godivig4]), the expo-

In this paper we investigate the stochastic resonance ph ential (€.g., Bezrukov and Vodyanoj20]), and the cubic

nomenon with a variety of soft threshold transfer functions (6-9- Vilaret al. [15]) have all been shown to yield stochas-

using Fisher information as a measure of information transtiC rfésonance using a signal-to-noise raBiR) measure of

mission. We introduce the Fisher information for a periodicinformation transmission about a periodic signal. The situa-
signal in discrete time which is a weighted sum of Fishertion is qwte d_|fferent if Fisher mformathn about_, e.g., acon-
information values for a set of constant signals that approxistant signak is used as a measure of information transmis-
mate the periodic signal. This enables us to compare resulfon across a soft threshold. Fisher information, the inverse
for periodic signals using Fisher information with results us-Of the asymptotic minimum variance of any regular estimator
ing signal-to-noise ratio. of the signal, is known to be invariant with respect to invert-

Suppose the transfer function increases only in an interlble transformationge.qg., Bickelet al.[21]). This property is
val, which we call a window, and is 0 below the window and desirable since one certainly does not wish to measure a
1 above it. We show that Fisher information does not depenghange of information if the noisy input signal can be re-
on the shape of the soft threshold, but only on the position of@ined by simply inverting the data. This implies that a
the signal relative to the window where part of the noisymodel using a logistic transfer function produces the same
signal is observed. This result greatly simplifies the studyFisher information as ifl were absent. There can be no
reducing it to the exploration of how the stochastic resonancgtochastic resonance in such a model.
phenomenon depends on the window itself. We study this More formally, suppose that at each discrete time
question. Computations indicate that if the signal is inside.t2, --- .ta the noisy signab+e(t;) is produced, where the
the soft threshold window, rather than outside it, there is nd0ise variableg(t;) are independent and identically distrib-
stochastic resonance. In other words, the edges of the winited(i.i.d.) with mean zero and variane#. In the following
dow are critical points for the emergence of stochastic resowe write brieflye; for £(t;). Note that we consider the case of
nance. a constant signal functiorg(t)=s. The probability density

In Sec. Il, we review the general property of Fisher infor- function and probability distribution function of; are de-
mation that it is unchanged by any invertible transformationnoted byf, andF,, respectively. Suppose the soft threshold
of a constant, periodic, or aperiodic signal. This implies thadataY;=Y(t;) are of the form
stochastic resonance cannot appear if the measure is Fisher
information and if the soft threshold function is invertible. Yi=T(s+e),

In Sec. lll, we define a large and convenient family of where the transfer functiof, also referred to as the “soft
noninvertible soft threshold functions in terms of noninvert-hreshold function,” is an invertible function on the whole
ible segments above and below a monotonic, invertible funcrea| line. If the distribution of= belongs to a scale family
tion h and compute for a constant sigrsathe Fisher infor-  gych as the normal distributioy,(2)=f(z/ o)/ o, the Fisher
mation abouts. We see that t.he Fls.herllnformatlon does Nnotinformation abous is
depend on the functioh that is applied in the soft threshold
window. In the example of exponential noise the situation ® ! (2)? 1~ (2?2
simplifies even further. Our calculations show that the Fisher (o) :f f (2 oz= o_zf f(2)
information, as a function of the noise variance, exhibits sto- - -
chastic resonance for various noise distributions. In the cas€his is also the Fisher information for the untransformed
of noise with compact support, we sketch a proof that stosignals+e;. Notice that Eq(1) is a decreasing function ef.
chastic resonance occurs. In other words, Fisher information for both untransformed

In Sec. IV, we show how the information transmission and transformed data always decreases @screases from
function depends on the width of the soft threshold window,0, meaning that stochastic resonance does not arise for in-
including the case where the window is open on one side. Weertible soft threshold transfer functions.
see that when the signal slips inside the window, stochastic The question arises, then, why the soft threshold results
resonance disappears. using the SNR, mentioned earlier, were obtained. It is pos-

Section V explores periodic signals and the comparison o$ible that the SNR measure is not invariant to invertible
Fisher information to signal-to-noise ratio for such signals.transfer functions. It is also possible that invertible transfer
We sketch an argument showing that stochastic resonandenctions, such as the logistic, can be rendered effectively
arises in the numeratg@the Fourier coefficient of the output noninvertible by the limitations of numerical precision of the

dz. (1)
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computations. In the next section, in order to explore thighe minimal asymptotic variance of any regular estimator of
guestion and to study the transfer function for Fisher infor-s (Bickel et al. [21]). Since our model is parametric, such an
mation more generally, we define a family of noninvertible efficientestimator ofs is the maximum likelihood estimator
soft threshold functions and examine the conditions undewhich solves 0={L,I(Y;), where I(y)=d/dsIng(y) is the
which one obtains stochastic resonance. In Sec. V we conscore function andj the probability density off. We have
pare Fisher information and signal-to-noise ratio for a perid(0)=—f,(a-s)/F,(a-s), [(1)=f,(b-s)/[1-F(b-9)], and

odic signal. I(y)=-f,(h"Xy)-9)/f,(h"(y)-s), 0<y<1l. Hence the
maximum likelihood estimator solves
I1l. FISHER INFORMATION AND NONINVERTIBLE f(a— S) f! (h'l(Y) -9
TRANSFER FUNCTIONS 0= E () =2 ( g oM - my Tt
2\ TF a9 0 Ty -9 oY

We begin by introducing the continuous but noninvertible ‘

soft threshold transfer functioh. It is convenient to do this x(Y,) + ﬁ LY, J)

in terms of fixed finite numbera<b in order to locate the 1-Fy(b-y)

function relative to the signal. As before, we kbe a con- _ £ (LY -

stant signal that, for now, we think of as being below the =-N f(a-s - w

thresholda, s<a. The noisy signal is+z;, and the distribu- Fo@a=9) v, Zo fo(h™(Y) —9)

tion and density functions of the noise drgand F,. The . f.(b-9

soft threshold dat¥; are defined by
Yi=T(s+ &) = Ipo)(S+ &) +h(s+ ) Lap(S+e), (2

+hp——,
11-F,(b-9

wh_ereﬁ_O is the number of’s with Y;=0 andf; the number

where 1(X) is an indicator function with value 1 iis inthe ~ Of i's with Y;=1. _ _ _

setA, xe A, and value 0 if not. For examplegpl(s+z;) is The Fisher information aboug is the expectation of the

1 if stg;=b, and zero otherwise. The functidnis an in- squared score function

vertible function on the restricted ranga,b) only. Notice Is=1(s) = Eg(I(Y))?.

that T is not invertible over the entire randec, +»). We

Using h™(Y)—s=¢, we obtain
cannot recover the noisy signal from the soft threshold data,

since all values o$+¢; belowa will have been mapped to 0 _fa=9? [P fl2)? f (b9
_ : s= + z+ )
and all values abovk to 1. The case=b, whereT is a step F.(a-9 < (2 1-F,(b-59)
function, was studied by Greenwoad al. [9 and 22 for
both constant and varying signals. Whena=Db, this becomes the Fisher information for a sharp
Our assumptions imply that the functidm is strictly  threshold function, or Heaviside function,
monotonically increasing on the “soft threshold window [fg(a—s)]z [f,,(b—s)]z B [f,,(a—s)]z

(a,b). If his linear on(a,b), thenT is piecewise linear with 1= + = .
slope 1(b-a) for a<x<b. Note that transfer functiorik as Fla-s) 1-F,b-9 F,a-sfl-F,(a-s]
defined in Eq.(2) are not only noninvertible but also non- (%)
trivial in the sense that they are monotonically increasing
with both (noninvertiblg constant andinvertible) increasing
parts. This does, in particular, exclu@gvial) constant func-
tions which are technically speaking both noninvertible an
monotonically increasingand clearly do not produce sto-
chastic resonange

In order to compute Fisher information for the soft thresh-
old transfer function we need the probability distribution of
Y, which will be denoted byG. We have

Notice that the center term of E@) is the Fisher infor-
mation of the invertible threshold function defined @nb)

nd so is simply omitted in E¢5) whena=b. The left-hand
erm in Eq.(4) is the Fisher information for the part of the
transfer function below the soft threshold window and the
right-hand term is that for the part above the window.

We assume that the distribution efbelongs to a scale

family, f(2)=f(z/ o)/ o andF (z) =F(z/ o). Hence Fisher in-
formation as a function ofr is

P(Y=0)=P(s+g=<a)=Fy a-59), [ (a_sﬂz
f —
P(Y e dy)=P(h(s+¢) e dy) forye (0,1), (o) = 0i2 %
F _
P(Y=1)=P(s+g=hb)=1-F,(b-5). ( o )
Hence the distributios of Y can be written as [ (b;sﬂz
1 .\ J(b—s)/o’ [f (Z)]2d2+ o (6)
— _ -1 _ _ .
G(dy) = F,(a-9s)1g(dy) + f,(h™(y) S)—h’(h"l(y)) Lo, @9ie (2 1- F<bTS>

X (dy) +[1 -F_ (b-19)]1,(dy). 3
(dy)+[ ( (dy) @ If f=¢ andF=® are the standard normal density and distri-
As mentioned in Sec. I, Fisher information is the inverse ofbution function, we have
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a-s)\ |2 It does not depend ob. Hence no information is gained if,
1 ¢<T) instead of just the exceedances in the simple sharp threshold
(o)== ———— model(a=b), we observe soft threshold data>a) or even
o q)(a;s) all data above a thresholh=2°). The optimal noise levet,
o where the curve takes its maximum, is the same in all mod-
2 els.
(b5 [¢( b;s” Compact supportWe are interes’ge_d in the qu_estion, which
+J 2(2)dz+ o 7) _soft thresholded data modgls exh|b|t stog:hastlc resonance—
(a-s)io b-s\ |’ i.e. for what models does Fisher information as a function of
1-®| — the noise levebr increase to a maximum and then decrease?
T This question cannot be answered for all models by a single
The computations above show that the Fisher informatiotheoretical argument, even if the distributibp of £ belongs
does not depend o This same point was made in Sec. V t0 & scale family, as we assume. If, for example, the noise
of Rousseatet al. [18] for the case where the signal is ran- distribution has compact support, we can verify that stochas-

dom and the mutual information between the distributions ofiC résonance must occur by showing that Fisher information
reaches a maximum for some nonzero valueods follows.

input signal and output is used instead of Fisher information: . S .
Exponential noise If the noise distribution is Suppose the noise distribution has compact support. This
means that all of its probability density lies within a bounded

exponential—i.e., f(x) =7, F(x)=1-e"—then the Fisher interval. We can show that stochastic resonance is exhibited
information also does not depend on the upper limit of th y verifying thatl (0)=0 if o< [0,a-9), (@) >0 if o=a

soft threshold window. This can be seen easily. Usin '
F’(X):f(X):—f,(X) and f(X):l—F(X), the Fisher informa- —.S, andls((r)—>0 asg— . SUpPOSG, WIth(?Ut loss of gener-
tion is ality, that the support of the noise densftyis [-o,o]—i.€e.,
f,(22=f(z/ o)/ o with f(z2 >0 on[-1, 1] and zero otherwise.
[f(a—s)}z Let O<o<a-s. Then P(Y=0)=F (a-s)=F((a-s)/0)=1
1

o J<b—s>/<r [f'(2)]? and the Fisher informatioBE(l(Y))? consists only of the first
(

ls(o) = 2| T 7ace T @ dz term in Eq.(4) pertaining to zero observationg(o)=f,(a
F(—) -s)/F (a-s). Sincef_(a-s)=0 andF ,(a-s)=1 (in the case
0=0, f, is replaced by a point mass at zgreave have
2 I(0)=0 for O<o<a-s.
f<_) Let c=a-s and considet o) as given in Eq(4) or Eq.
A (6) with the third summand being possibly zero. Clearly, all
1- F( )

a-s)lo

terms of the sum are non-negative. Sifgéa—s)>0 and
F,(a-s)>0, the first summand is strictly greater than zero.

b-s a-s ) , X
+ F( ) - F(—) mation Eq.(6). The first and third summands tend to a non-
negative constant and the second summand decreases to zero
as o increases. Henck(o) —0 aso— <, due to the com-

information for the compact noise density(z)=f(z/ o)/ o
with f(z)=0.5coqnwz)+1] for —1<z<1, f(z)=0 otherwise,
the soft threshold window=1,b=1.5, and three representa-
{ a-s\ 12 tive values of the signai<a. Stochastic resonance is appar-
(%))

a-s\|? This showsl(0) >0 if c=a-s.
1 f Ty To showlo)—0 for o— oo, consider the Fisher infor-
&
mon factor 152,
( —s) Figure Xa) displays the results of a calculation of Fisher

2> ent as predicted by the above analysis.
1 o b-s a-s Remark If the signals is random,s=X+6 whereX is a
— -f +f . ; ;
o2 a-s random variable with compact support aéic location pa-
F . rameter, a similar argument shows that stochastic resonance
] is exhibited. For both constant and varying signals, trans-

formed by nontrivial noninvertible transfer functions such as
those defined in Eq2), Fisher information displays stochas-
tic resonance.

Because the Gaussi@anormal) probability distribution is
very similar to one with compact suppdthere is very little
|:{f<as }2 probability density in the tails we would expect Fisher in-

formation to exhibit stochastic resonance for Gaussian noise
) (8) and the same window. Figurgh) displays the results of
F(E) calculations of Fisher information from E) for three val-
o ues of the constant signalwith the soft threshold window
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Fisher information. In the next section we discuss the effects
of changing the width of the soft threshold window and the
location of the signal with respect to that window.

iy
(<]

—_
N

IV. CHANGING THE SOFT THRESHOLD WINDOW

In this section, we study the behavior of the Fisher infor-
mation and the occurrence of stochastic resonance when the
upper and lower bounds of the soft threshold window vary.
As mentioned earlier the case=b corresponds to the sharp
threshold model, which was investigated by Greenwood

Fisher Information
[«

'

% o0z 04 06 08 10 12 14 16 etal[dl _

(a) Compact Noise Standard Deviation Anqther exgmple_ of the soft threshold model |s_the case

b=cw; i.e., an invertible transformatioh of the data is ob-
14 . : : : . . : : served above the threshadd
12 Yi :T(S+ 8i) =h(S+ Si)l(aym)(s*' Si).

g 10} : : : . . .

= Since Fisher mformatlpn f0§5 will, again, not depepd oh,

E 8 we can takén to be the identity function; i.e., the noisy signal

.g is observed directly if it is large enough. The Fisher informa-

s 61 tion for this model is

ﬁ 4r 2 o0 ’ 2

= 11/ sos - (g = fe@=9F | f [P,

1 F(r(a_s) a-s fa'(z)
%.0 02 04 06 08 10 12 14 16 For s<a<b we expect an increase of information ks

(b) Gaussian Noise Standard Deviation increases. In Figs.(2) and 2b) we see, for two values o,
that for a=1 the maximum information does not increase

10 ' ' ' ' ' ' ' ' much afterb reaches 1.5. The stochastic resonance point is
] higher and the peak sharper ®closer to the lower edge of
81 the window.

H T If a=-% andb=%, then the noisy signal, or an invertible

‘g 6t transformation of it, is completely observed;=h(s+zg;).

5 This is the case discussed in Sec. I, where Fisher informa-

E L, tion I (o), computed from Eq(1), is decreasing inr. An

_§ example is the logistic function.

2 ol Greenwoocet al.[9] compared Fisher information for the
model of a completely observed signal, the sharp threshold
model, and the signal observed above a threshold. For ex-

%_0 0:2 0:4 0:6 0:8 1:0 1:2 1:4 1.6 gmple, the proportion of the total ayailaple Fisher informa-
© Exponential Noise Standard Deviation tion for the fully observed signal retained in the sharp thresh-

old model with s=a=b is about 0.64, whereas whes
FIG. 1. (a) The Fisher information transmission function for =g = the proportion retained is about 0.82, a substantial
noise density with compact support,(z)=f(z/0)/o with f(2) increase.
=0.9codm2)+1] for ~1<z<1, soft threshold window1,1.5. The Another question of interest is, do we observe stochastic
integral in the middle term of Eq6) was evaluated numerically (esonance if instead of the signal being subthresfmida
using Neville's algorithm for Romberg integratidi23]. (b) The ¢ gignals is inside the soft threshold windowa.< s< b?
;:Sher: ||réform§t|or11 taansr%']ss'.o? funlc.t'otr;‘ for .S;ussf"? ;O'Se' SOfirhe answer is “no” because whanis in the window and
reshoid win .OV\(_ » 1.9. The integral in the middie of Eq7) was o=0, theY; give full “local” information about the location
evaluated as iffa); the Gaussian distribution was approximated to - . . .
. ) . ! . of s. As o increases, the information can only decrease. This
an accuracy of nine decimal placag) The Fisher information . illustrated in Fia. 3 wh that th
transmission function for exponential noise, soft threshold WindOV\)S nus r.a.e '.n I9. > where we see that the ca;a appears
(1,15, to be critical in the sense that fex a, stochastic resonance
appears but fos>a it does not. This situation is symmetric
a=1,b=1.5. Stochastic resonance is clearly present. Similawith respect to the soft threshold window, with stochastic
results for exponential noise based on calculations of Fisheesonance appearing for batkca and fors>b. The maxi-
information from Eq(8) appear in Fig. (c). The form of the mum of the information transmission curve increases and
result does not depend on the invertible portion of the transeccurs at lower noise levels asapproaches the soft thresh-
fer function, h, which does not appear in the equations forold window from above or from below.
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3.5

3.0}
251
20t
15}
1.0t

Fisher Information

05}

0.0 —_—
00 02 04 06 08 10 12 14 16

(a) Gaussian Noise Standard Deviation

121

Fisher Information

0.0 02 04 06 08 1.0 1.2 1.4 1.6

(b) Gaussian Noise Standard Deviation

FIG. 2. Fisher information transmission function for Gaussian

noise, soft threshold windova,b)=(1,1.2), (1,1.5, and(1,5.1. (a)
The signals=0.4 is far below the windowb) The signals=0.8 is
near the lower edga=1 of the window.

V. PERIODIC SIGNAL

PHYSICAL REVIEW E70, 051110(2004

Signal approximated by
m constant segments

2 JANNANFAN _ - - b
1 JARVAAVAR I _
Soft threshold
window a<b Completely inside
c=125
1 /\ /\ /\ Straddle a
/ VUV \ =10

Completely outside
¢=0b

TAVAVA

FIG. 4. Possible locations of a periodic signal relative to a soft
threshold window and a periodic signal observed at discrete time
points.

»
»>

Time

amplitude of the signal to the amplitude of the noise. How-
ever, if output signal and noise from a specific model are
being observed, the SNR is computed in a way appropriate to
the model and data at hand. Some examples can be found in
[24,15.

In this section, we compare Fisher information with the
SNR as defined by Chapeau-Blondeau and Godiidt,
who considered soft threshold models with a periodic signal
of fixed frequency.

Our results for a constant signal extend to the case of a
periodic signal with fixed frequency, such as a sinusoid. We
center the signal at and write it asAg(t) +c, whereA is the
amplitude ands(-)| < 1. Depending ot andA, the signal is
either completely outside the soft threshold windayb),
completely inside the window, or partly inside and partly

Much of the literature on stochastic resonance concerngytside the windowFig. 4). The output signal is observed at
periodic signals and the most-used measure of output signgiscrete time points. Hence we can think of the underlying
deteCtablllty is the Signal-tO'nOise ratio. The definition of theperiodic Signa] as being approximated by a Setmpiece_
SNR s, however, not uniform in the literature. If the signal is wise constant signal§-ig. 4). The Fisher information for the
periodic and the noise is “white,” the SNR is the ratio of thesjgnal is the sum of the information calculated for the con-

40
‘_———-S=(8+b)/2=1.25

= 30
=/
g
£ $=a-0.2=0.8 and s=b+0.2=1.7
2 20l / an +
[=
)
£
2 10t
. =a-0.6=0.4 and s=b+0.6=2.1

0 R N n ——

02 00 02 04 06 08 10 12 14 16

Gaussian Noise Standard Deviation

stant segments. Since each cycle contains a different realiza-
tion of the noise, we are implicitly averaging over many
different realizations. Having defined Fisher information for

a periodic signal in a way that permits comparison with the
SNR measure, we will compare the two measures as func-
tions of o.

Consider, for example, a subthreshold periodic signal,
Aq(t)+c<a<b. For simplicity we assume that the period is
27 and that we have equally spaced time points at which we
observe the output overperiods. Divide each period into
subintervals and denote the end points by

2
tikzjf’f%(k-l), ji=1,...m,

FIG. 3. The Fisher information transmission function shows sto-The observations ané, =T(As(ty) +c+ej) where the ampli-
chastic resonance when the signal is either above or below the sdide A>0 is the parameter and thg's are i.i.d. errors.
threshold window, but not when it is inside the window. The func- Because the periodic signal simply repeats overrttperi-

tion is symmetric about the soft threshold window1.5.

ods, s(ty)=s(tj;). Hence for eachj the observations
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Yj1,...,Yjy are i.i.d. as with a constant signal. As before, we 10001
can use a maximum likelihood estimator, a solution of '5',‘ 00
(d/dA){E”zlEj”;1 In g(Yj)}=0. The distribution functionG 3: 8
and densityg are as beforgsee Sec. I) with s replaced by z 600
Ad(tj;)+c. In order to compute Fisher information, one dif- ) 400
ferentiates the log-likelihooy_, =, In g(Y;,) as in Sec. Ill, E
now with respect to the parametér A factor of s(tj;) ap- é" 200
pears as the inner derivative Af(t;;) +c (chain rulg. Since 2o
the errors are independent, the Fisher information aBdst >
m o A*F
1(A) = 2 s(tjp)?](A),
j=1
. FIG. 5. Fisher information transmission function for a periodic
with signal centered at, 0.2 sir(t) +c. The value ofc varies from below
fg(a[AS(tjl) +c])? b-[As(tjp)+c] f/(2)2 the window,(1,2), to above the window. Stochastic resonance ap-
|j(A) = F (a- - . az pears forc outside the window. The effect is symmetric with respect
Aa-[Asti) +c])  Jaqasyyea fol@

to the window. Integrals were evaluated as in Fig)1
fo(b-[As(tjy) + )
1-F (b-[Astjy) +c)]

Notice thatl;(A) is the Fisher information at thgh time
point of a cycle. Since in each cycle the signal values at the
jth time point are the same—name#ft;,) =s(t;;)—the in-
formation I;(A) is the same as for constant signal E4),
except for the value of the signal. The weighted sum of thes
separate terms gives the Fisher information aldior the
entire periodic signal. Notice that the observations where th
signal is small or larggs(-) close to 1 or =1 contribute more

to the information than those around zero. then saturating at a certain point when about half of Ytse

From our dISCU'SSIOI’! |n.Se<.:. v ab_out constant signals tISyill be zero and the other half one. This is easily verified
clear that for noise distributions with a unimodal denS|tyf0r this model, assuming tha is strictly monotonically

Fisher information, regarded as a functioncofwill behave increasing and symmetric,F(0)=1/2. The variance
as follows. If the periodic signal is completely outside theis VarY,;=P(Y,=D)[1-P(Y;;=1)]={1-F(a-As{t,)]/ o)}
soft threshold window, the information transmission curve is 11 1 N . . 11

a weighted sum of curves showing stochastic resonance, i ;X F(la-Asltjy)]/0), which is monotonically increasing from
creasing from zero to a maximum and then decreasing agal _F(;)]F(Oc):hq to [1_':(0).]'::)0);1/.4 asha t((ejnds frprgM())
to zero, thus giving a curve of the same type. If the signal ido - ueh'_[g.t IS rr?onqtonlc ehavior, the denominakor
completely inside the window, there is no stochastic resopaq_r;}ot er): Ibit stoc gétlc resgnance. . b
nance since Fisher information is a weighted sum of decreas- | nat the numeratos must have a maximum can be seen

ing curves—i.e., decreasing . If the signal straddles the as follows. Consider

1 2
N=—2 VarY;;—AB.
mgl Tm
We now sketch an argument that the stochastic resonance
effect is obtained from the numerat8r(the Fourier coeffi-
cient of the output signalof the SNR expressio®/R. For
Simplicity, consider a signal with center @gt1), and a
subthreshold signal with one sharp thresha@d]n the de-
ominator N, the output variance, Vaf is an increasing
function of the noise standard deviation starting at 0 and

upper or lower edge of the window or if it straddles the entire 1 2
window, we have a mixture of these two types of curves: g=|=>" EY, 60t
stochastic resonance and decreasing curves. The shape of the | Mj=1

2
contributes most strongly—i.e., on the signal location and

information transmission curve will depend on which type
amplitude relative to the window location and window ‘

l m
=2 EYj[cos - tjy) +i sin(- t;y)]
mj:l

width.
m m 2
The corresponding signal-to-noise ratio used (] at _1 B . e
the fundamental frequency is the raBsN, whereS and N TP ng EYj1cos- 1) + 'j% EYjysin(—t)

are defined as follows. Consider the first period of the signal.

The numerato6is the squared absolute value of the Fourier 1 m 2 m ) 2
coefficient of the output signal: =2 21 EYjicod-tj) | + 21 EYjisin(-t) | |.
i= i=
2

9

In the sharp threshold case, thi& expectation isEYj;=1
The denominatoiN is the averaged output variance times —F([a-As(tj;)]/o) which is, under the above assumptions
multiplied by the step width 2/m and a constant bandwidth and for everyj, monotonically increasing from 1H<)=0
AB: to the constant 1F(0)=1/2 aso increases. Henc8=0 for

S=

1w
=2 EYjein
mio
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-

2.0
1.5

FIG. 6. (8) The SNR informa-
tion transmission function for a
o A 5 N periodic signal centered at,

= 0.2 sir(t)+c, with a linear thresh-
old functionh inside the window
(1,2, m=128. Integrals were
evaluated as in Fig.(h). (b) The
numerator S (Fourier coefficient
of the output signalof the SNR
for the same conditions as (@).
(c) The denominatolN (averaged
output variancg of the SNR for
the same conditions as {@).

AR
AS A& =0
QL YV _ae
\a““O\
NS

=0 andS> 0 for finite >0, since theEYj;’s vary withj in ~ The last two terms correspond to the expectatigig;;) in
this case. For— o we haveS=0: All expectations tend to the sharp threshold model and exhibit the behavior described

1/2; i.e.,Stends to in the discussion above. In particular, the expectations in-
m 2 m 2 crease from 0 to 1/2 as increases. We will show that the
— (E cos(—t-l)) + (E sin(—t-l)) _ integral in Eq(10) is 0 for ¢=0 ando==. Since the integral

4n? =1 : =1 . is non-negative, this, combined with the above, will show

that theE(Y;y)’s in the soft threshold model exhibit the same

Because of the symmetry qf the si.ne and cos.ine and sincg YWehavior as those in the sharp threshold model, which ex-
assume equally spaced time points, negative and positiiaing stochastic resonance. Consider, now, the integral in
values cancel out and the expression is zero. Eq. (10). The range of the functiom is [0,1]. Hence the

The same argument ShOWS. ti8t0 for any value Qfa if integral is bounded from below by 0 and from above by
the signal is constanfg(t) =s, since then all expectations are

the sameEYj;=1-F((a-s)/o) for everyj. Hence the SNR [o-As(tj) Vo b- AS(t;,) a-Agt;,)
j f(x)dsz( : )—F( : )
[

degenerates in this case.

One can see, looking &as computed in Eq9), that the
stochastic resonance behavior of the SNR depends on t
behavior ino of the expectation o¥j;: stochastic resonance
results if, foro=0 and foro— =, EYj; is the same for al,
whereas for some the EYj;’s are not the same for ajl Let
us look at the expectatior¥(Yj,) in the soft threshold model
Eq. (2) with soft threshold windowa,b). For simplicity we
assume again that the centeof the signal is 0. Then,

a-Astj))o o
Igince the signal is subthreshold, boli+Agt;;) and a
—Agtj;) are non-negative. Hence, far=0 and o=, the
integrals are~(e) —F(e)=0 andF(0)-F(0)=0.

For invertible soft threshold functions analogous consid-
erations apply. Consider the logistic function. An interval,
which may be, in effect, a soft threshold window for this
case, is an interval around the center of the logistic curve

outside of which the function values are approximately zero
E(Yjo) = f T(AS(tj2) + o) f(x)dx or one. Asg— =, the expectationgYj, are 1/2 in the limit.
For =0, these expectations are approximately zero if and

_ f[b_AS(til)]/" h(AS(t;y) + o) f(x)dx+ 1 ?hnly if the .signals—i.e., the vaIu_eés(tjl)+c—are outside
[a-Astt Vo e apprommate soft thrgshold window. '
This argument, showing that stochastic resonance occurs
_ F( b- AS(M)) (10) in the numerato6 of the SNR, may account for the stochas-
o ' tic resonance for subthreshold periodic signals with soft
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FIG. 7. (a) The SNR information transmission function for a
periodic signal centered a&f 0.5 sir(t) +c, with a concave upward

threshold functiorh(z)=(z-1)? in the window(1,2). (b) As (&) but FIG. 8. (@ The SNR information transmission function for a
w!th concave downward threshold functitwiz)=1—(z—2)? in the logistic soft threshold transfer function(z)=(1+e @ ¥/8) 1 with
window (1,2). a=1.5 andB=0.05 and a periodic signal centeredcat0.5 sirt)

+c. Integrals were evaluated as in FighlLexcept that a generali-

thresholds observed by Chapeau-Blondeau and Godil4ér zation of Romberg integration to the case of improper integrals was
and also by Rousseaat al. [18]. used.(b) As (a) but with =1.5 andg=0.2.

For our illustrations we considered Gaussian noise. In
Figs. 5-7 we used a soft threshold transfer function as in Edhibit stochastic resonance, as pointed out in Sec. Il. In Fig.
(2) with soft threshold window(a,b)=(1,2), a sinusoidal  8(a), with «=1.5 andB8=0.05, the SNR does show stochastic
signal with amplitudeA=0.2, 0.2 sift) +c, andm=128. Fig-  resonance for values afaway from the value of the location
ure 5 shows the Fisher information abduivhereas Fig. @  parametew, in line with the above argument concerning the
shows the SNR with linear threshold functibnincreasing logistic and as found by Chapeau-Blondeau and Godivier
betweera=1 andb=2. Notice that Figs. 5 and() are very [14]. Indeed, for some values af, the SNR plot closely
similar. The vertical scales are not directly comparable. Theesembles the function in their Fig. 7 for the same valug,of
Fisher information takes rather large values because wwith an initial monotonic drop in SNR at low noise levels
chose a largen. Figures 6b) and Gc) show the numerator followed by a rise in SNR at intermediate noise levels and
and denominator of the SNR separately. We see that, as dhen a further decline. The behavior may be explained by the
gued above, the numerator shows stochastic resonance whéanominator of the SNR going to 0 asgoes to 0, as shown
the signal is outside the window. Figure@yand {b) show in Fig. 6c). One could examine the relative rates of change
the SNR forh concave upward and downward, respectively,in numerator and denominator to establish a firm argument.
in the window. These figures are related by reverse symmdn Fig. &b) the logistic function hag=1.5 andB=0.2. As in
try. They are similar in form but not identical to Fig(eb. [14], we find that the less-steep logistic produces no stochas-
Although the SNR, unlike Fisher information, does dependic resonance for some of the same sigrihksre values of)
on h, the dependence is not very pronounced in our exfor which the steeper logistic in Fig.(®& did produce sto-
amples. chastic resonance. For valuesmfarther from the value of

Figures 8a) and &b) show the SNR for a sinusoidal sig- «, however, we do see slight stochastic resonance in Fig.
nal with amplitude 0.5 and centemwith the logistic function  8(b). This is again a windowlike effect and illustrates the

T(2) = h(z) = (1 +& @8y delicate dependence of stochastic resonance on signal place-
ment with respect to the soft threshold function.
as a soft threshold function. Since this transfer funcfios In summary, Fisher information does not produce stochas-

invertible, the Fisher informatiomot shown, does not ex- tic resonance for invertible soft threshold transfer functions
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but does produce it for nontrivial noninvertible functions andgrowing stronger when the signal is near an interval of in-
for both constant and changing signals. The SNR informaerease, and stochastic resonance disappears in intervals
tion transmission curve is degenerate for constant signals buihere the transfer function is definitely increasing. What is
may exhibit stochastic resonance for periodic signals foimportant for stochastic resonance, whether measured by
both invertible and noninvertible transfer functions. Both Fisher information or the SNR, is the signal being near an
measures have the property that stochastic resonance is iige between an interval of relatively constant transfer func-
found when the signal is entirely within the soft thresholdjon and an interval where this function increases. The slope
window. For constant signals and Fisher information, they the transfer function is not, in itself, of great importance.
edges of the soft threshold window are critical points for  1ha difference between the two measures may not be of

stochasth resonance. For per_|0d|c signals, computatio eat practical importance. In all living organisms and many
show similar results. Since the signal may straddle the edg her natural systems, there are energy or information quan-

of the window, the disappearance of stochastic resonance @%es below which the system simply does not respond and

theT?\Ignlgls?;rvfri‘é?r?:gﬁot:eh\;v;mtjr?g)r@?ga:)ztlj(?;igbr:gtés other quantities above which the response saturates, creating
g & noninvertible nonlinearity that will result in stochastic

measure of information about “weak” noisy signals movin 2. o . )
across soft thresholds. First, it has a uniyuegdefinition aﬁresonance under the conditions we have indicated, using ei-
) ’ q er measure of information transfer.

can be computed for periodic as well as for constant signals.

It has an information theoretic status, of the asymptotic vari-

ance.of an _eff|C|ent estimator of input signal ampl!tude. Itis ACKNOWLEDGMENTS
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